Main contents


Ceilbot Kick-off meeting for Spring 2011 on Monday Jan 24th at 14-16 in room TUAS 1593. Wellcome!

The goal for the study year 2010-2011 is to build the first working prototype of the robot moving along ceiling. The first demonstration model will be realized using existing hardware with minimal procurement or building of new one. Study results from previous semesters are applied as much as possible.

The Spring 2010 will concentrate on mechanical assembly of rail system, design and procurement of trolley prototype, development of actuator, development of user-interface, main software, planning and navigation algorithms, development of 3D-vision system, mapping and localization, study and development of electrical power system etc. .

Detailed operations of the demonstration model are yet to be defined. Below is described a possible structure and operations that could be a target for the demonstration model

Current mechanical description: A monorail is mounted on the ceiling, running inside one room or between two or three rooms. There may be a rail switching system or turntable to allow use of several rails and routes. (Some commercial alternatives.) A car runs along the rail with its own traction system. The car carries a Microsoft Kinect sensor, a laser scanner and a web-camera. In addition, a robotic manipulator will be designed and demonstrated -if not complete functional yet, but at least showing basic construction. (Some ideas for manipulator constrcuction.)

Possible operational description: User wishes for a can of soft-drink. He communicates his wish for the robot -using user interface yet to be defined. The robot plans the route to the target. If it does not know where the can of soft-drink may be found, it asks. Then robot operates rail switches or turntables -if present, and travels close to the location where the can is supposed to be. After reaching the target the robot uses its laser scanner and camera to find objects being present. It detects many objects around and may be able to recognize one of them being the can. Robot then calculates the exact position of the can and is so prepared to grab it and take it to the operator. If the robot is not able to recognize the can, he presents images of available objects to the operator and asks which is the one the user desires to have. In case the manipulator is being installed the robot will grab the can and deliver it to the operator.

A Related project for inspiration:
Acroboter illustrative pictures and movies

Research topics

Needed subsystems to realize the operation described above include at least -but not limited to- the following:

  1. Demonstration environment consisting of 1-3 small rooms and appropriate furniture, partly existing
  2. Possible automatic doors and hatches needed to allow robot mobility between rooms
  3. Rail system with optional curves, swithes and turntables, partly existing
  4. Modular rail-mounting system on the ceiling, existing
  5. Car traveling along the rail, development starts in Spring 2011
  6. Laser and camera systems for object detection, initiated
  7. Manipulator system (some simple hardware exists), initiated
  8. Power delivery system (batteries, cables, sliding brush), to be studied in Spring 2011
  9. Communications system for user interface, car, camera, laser, rail switches, sensors, manipulator, etc., initiated
  10. Car localization system (odometry, sensors along rail, vision-based positioning), initiated
  11. Map building algorithm, ongoing
  12. Control software for car, rail switches, manipulator, doors, laser and camera, initiated
  13. User interface incl. commanding and information exchange, initiated
  14. Upper level software to coordinate all operations, initiated
  15. Safety measures: evaluation of risks, emergency stop, failure detection...
  16. Aesthetic design: covers for rails and car and manipulator

Development of each subsystem needs to start with a clear operations description and requirements definition which shall be evaluated considering the complete system. All subsystems must be made to work together fluently which will require tight co-operation and information exchange between all participants and effective project working and project leading.

Additional activities that can be performed in preparation for next steps

  1. Further detailed evaluation of possible ceilbot operations at home/indoors and related requirements
  2. Market / business opportunity review on ceilbots and related technologies
  3. Evaluation of manipulator requirements and definition of suitable manipulator structure
  4. Design, modeling and demonstration of elephant-trunc -like manipulator
  5. And similar. Propose your own research topic suitable for your own studies:


Students would participate and gain credits from a project work course suitable for their own studies while performing the actual research within Ceilbot project under coordination of Ceilbot project staff. Suitable project work size is 4-6 credits, while also performing individual deeper and larger study for 10 credits or even more can be negotiated. Extension of the work as a Thesis research may be negotiated.

Requirements for class AS-0.3200 'Automaatio- ja systeemitekniikan projektityöt'

Students wishing to gain credits from class AS-0.3200 shall do the following:

  1. Enroll to As-0.3200 via Oodi.
  2. Study the instructions in As-0.3200 Wiki and follow those.
  3. Upload research plan, midterm report and other reports as requested.
  4. Have a presentation on AS-0.3200 final presentation day. Also a demo or video is appreciated, if available.
  5. Upload the final report to As-0.3200 wiki pages in time.
  6. Reporting instructions available in As-0.3200 Wiki
  7. Other reports and presentations, including work plan, according to weekly meetings with Ceilbot project group.
  8. No student numbers in reports since they are placed on Wiki-pages.

Requirements from Ceilbot project group

  1. Participate in kick-off meeting and definition of tasks and goals.
  2. Prepare a workplan to cover each week's activities til delivery of final report.
  3. Participate on project meetings and weekly meetings, present the latest results with a weekly report and short presentation.
  4. Document format for Wiki-pages is Adobe PDF. Additional videos, animations and simulations are welcome.
  5. Document shall include diary of work hours spent, identifying also the task where spent.
  6. No student numbers in documents.
  7. Output from each working group is:
  • Work plan
  • Weekly report + presentation 5-10 min (ppt + pdf)
  • Final report 20-50 pages (pdf)
  • Final Presentation in Project course final session. (pdf + ppt)
  • Any hardware, software, simulations or animations to be produced.

Ceilbot project Fall 2010 length is 20 weeks (24.1.-10.6.); 6 ECTS stands for approx. 8 hours of weekly work.

Agenda for the Ceilbot kick-off meeting

  1. Define the tasks for the semester and form the working groups to fulfill those. Check what has been described on web-pages.
  2. Check the expected output from the project, as described above.
  3. Agree on study credits to be given. 6 ECTS is preferred and assumed preliminarily. Changes in both directions can be negotiated also later during project progress.
  4. Advice the groups to create a workplan for the semester (20 weeks). Goal and main activities for each week shall be identified, including final reporting. The workplans shall be presented, commented and published on the second meeting in pdf+ppt formats.
  5. For the second meeting a state of the art study shall be initiated. Current status shall be presented on the second meeting, but the research may continue later parallel with other activities.
  6. Agree on meeting schedule on weekly basis, at least for the first period; day, time and place.
  7. Remind that students shall not put their student number in documentation, since they will be published on web.
  8. Remind about responsibilities regarding class AS-0.3200 in case students wish to have credits from that class.
  9. Any other issues.

Meeting schedule and progress plan. On Mondays at 12:00 in room TUAS 1593, unless otherwise specified.

Date Tasks Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
Infrastructure Rail system Trolley Localization 3D-imaging, Camera positioning Software Power delivery subsystem Manipulator
Matthias, Tomi, David, All To be nominated, Tomi Tapio Juhana, Antti Vito Nina Matthias
24.1. TUAS 1593 Kick-off meeting at 14-16
31.1. TUAS 1593
2.2. AS-0.3200 Research Plan Presentation Power_delivery_system_project_plan.pdf pdf
7.2. TUAS 1593
14.2. TUAS 1592
21.2. DF Meet in bar at 15. Then see the status of grid hoisting.
28.2. TUAS 1593
7.3. TUAS 1593
14.3. TUAS 1592
21.3. DF Hoisting of the grid. Curved rail segments placed on grid.
23.3. AS-0.3200 Midterm Review
28.3. TUAS 1593 Camera_actuator_ppt.pdf pdf Camera_actuator.pdf pdf
4.4. DF
11.4. DF Rail system assembled.
18.4. TUAS 1593
2.5. TUAS 1592 Nina's Final presentation for ceilbot team.
9.5. TUAS 1593 at 12:00-14:00
11.5. As 0-3200 Final presentations.
16.5. TUAS 1593 No meeting.
23.5. TUAS 1593 Antti's Final presentation for ceilbot team.
30.5. TUAS 1593 Final presentations by Vito and Matthias.